4.7 Article

Hydrogen sensitivity of doped CuO/ZnO heterocontact sensors

Journal

SENSORS AND ACTUATORS B-CHEMICAL
Volume 106, Issue 2, Pages 837-842

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.snb.2004.10.004

Keywords

hydrogen sensor; heterocontact; CuO; ZnO

Ask authors/readers for more resources

Heterocontact sensors based on p-type CuO and n-type ZnO ceramics have been shown to exhibit a high sensitivity to reducing gas species and an intrinsic selectivity. In this work, doped heterocontact sensors were prepared via solid state synthesis routes. CuO was doped with various monovalent (Li, Na) and isovalent (Ca, Sr, Ni) dopants at different compositions to form both single phase and two phase samples. Effects of dopants on hydrogen sensitivity through conductivity and heterogeneous microstructure were investigated using dc current-voltage measurements and ac impedance analysis. It was observed that both monovalent and divalent dopants increased the hydrogen sensitivity significantly. The highest sensitivity was observed in a 2.5 mol% Ni-CuO/ZnO heterocontact and low amounts of Li doping were shown to greatly enhance the rectifying characteristics. (c) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available