4.7 Article

Inclination flattening and the geocentric axial dipole hypothesis

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 233, Issue 3-4, Pages 247-261

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2005.01.027

Keywords

geomagnetic field; axial geocentric dipole hypothesis; sedimentary inclination error; paleosecular variation; Asian inclination anomaly

Ask authors/readers for more resources

William Gilbert first articulated what has come to be known as the geocentric axial dipole hypothesis. The GAD hypothesis is the principle on which paleogeographic reconstructions rely to constrain paleolatitude. For decades, there have been calls for permanent non-dipole contributions to the time-averaged field. Recently, these have demanded large contributions of the axial octupole, which, if valid, would call into question the general utility of the GAD hypothesis. In the process of geological recording of the geomagnetic field, Earth filters distort the directions. Many processes, for example, sedimentary inclination flattening and random tilting, can lead to a net shallowing of the observed direction. Therefore, inclinations that are shallower than expected from GAD can be explained by recording biases, northward transport, or non-dipole geomagnetic fields. Using paleomagnetic data from the last 5 million years from well-constrained lava flow data allows the construction of a statistical geomagnetic field model. Such a model can predict not only the average expected direction for a given latitude, but also the shape of the distribution of directions produced by secular variation. The elongation of predicted directions varies as a function of latitude (from significantly elongate in the up/down direction at the equator to circularly symmetric at the poles). Sedimentary inclination flattening also works in a predictable manner producing elongations that are stretched side to side and the degree of flattening depending on the inclination of the applied field and a flattening factor f. The twin tools of the predicted elongation/inclination relationship characteristic of the geomagnetic field for the past 5 million years and the distortion of the directions predicted from sedimentary inclination flattening allows us to find the flattening factor that yields corrected directions with an elongation and average inclination consistent with the statistical field model. The method can be tested using sediments deposited in a known field. Application of the elongation/inclination correction method to two magnetostratigraphic data sets from red beds in Asia and Pakistan brings the inclinations into agreement with those predicted from modem GPS measurements and from global paleomagnetic data. There appears to be no compelling reason at this time to abandon the geocentric dipole hypothesis, which has provided such an excellent working model for so long, (C) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available