4.8 Article

Dynamic control strategy for the electrolyte flow rate of vanadium redox flow batteries

Journal

APPLIED ENERGY
Volume 227, Issue -, Pages 613-623

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2017.07.065

Keywords

Flow battery; Vanadium redox flow battery; Battery management; Mass transfer; Concentration overpotential; System efficiency

Funding

  1. National Key R&D Program of China [2016YFB0901100]
  2. National Natural Science Foundation of China [51606164]

Ask authors/readers for more resources

The vanadium redox flow battery (VRB) is considered to be one of the most promising technologies for large-scale energy storage, with the electrolyte flow rate capable of significantly affecting the mass transfer, temperature rise, and pump power losses of the VRB system. Although the flow-rate optimization under constant current has been addressed in the literature, few studies have investigated the control strategy for the electrolyte flow rate under varying (dis-)charge power that is common in practical applications. Moreover, fewer studies have considered the concentration discrepancy of the active species in the tank and stack in the flow-rate optimization. In this paper, the electrolyte flow-rate optimization is investigated by incorporating the influences of the flow rate on the mass transfer, temperature rise, and required pump power. A transient model of the VRB system is developed to derive the total power losses (by which the overall system energy efficiency is determined; include losses resulting from overpotentials, ohmic drops, and required pump power) as a function of the applied current, concentration of the active species in the stack, and flow rate of the electrolyte. Based on this model, a dynamic flow-rate control strategy is proposed for determining the optimal flow rate under varying (dis-)charge power and state-of-charge conditions. The simulation results show that the proposed control strategy can deliver a high VRB system efficiency of 87.7%, and manage the electrolyte temperature to the safe range during mild summer days. (C) 2017 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available