4.2 Article Proceedings Paper

Muscle growth patterns and regulation during fish ontogeny

Journal

GENERAL AND COMPARATIVE ENDOCRINOLOGY
Volume 142, Issue 1-2, Pages 111-116

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ygcen.2004.12.016

Keywords

teleost; muscle differentiation; muscle growth; endocrine factors; autocrine factors; myostatin; IGFs; FGFs

Ask authors/readers for more resources

In fish. the skeletal muscle of the trunk and the tail derives from the somites which form in the paraxial mesoderm in a rostro-caudal sequence. The development of the fish myotome begins with the onset of myogenic regulatory factors expression and continues with the formation of a distinct superficial layer of slow muscle fibres that covers a bulk of fast muscle fibres located in the deep portion of the myotome. Muscle fibres of the slow-twitch lineage originate in fish embryos from adaxial cells, a distinct subpopulation of the paraxial mesoderm that flanks the notochord. During the early maturation of the somite these adaxial cells migrate away from the notochord towards the lateral part of the somite where they form the superficial slow fibres. Lateral presomitic cells that remain deep in the myotome differentiate into fast muscle fibres. Morphogens of the hedgehog family secreted by the notochord have a pivotal role in inducing the slow-twitch lineage. In late embryos, additional fibres are added from discrete germinal zones situated at the ventral and dorsal extremes of the developing myotome. This regionalised process has been termed stratified hyperplasia. In fish which grow to a large final size this is followed by a mosaic hyperplastic process that leads to the formation of new fibres throughout the whole myotome. Current knowledge about the endocrine and autocrine factors that potentially regulate the proliferation and the differentiation of muscle cells within the embryonic and larval fish myotome is reviewed. © 2005 Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available