4.7 Article

Ovarian cancer identification based on dimensionality reduction for high-throughput mass spectrometry data

Ask authors/readers for more resources

Motivation: High-throughput and high-resolution mass spectrometry instruments are increasingly used for disease classification and therapeutic guidance. However, the analysis of immense amount of data poses considerable challenges. We have therefore developed a novel method for dimensionality reduction and tested on a published ovarian high-resolution SELDI-TOF dataset. Results: We have developed a four-step strategy for data preprocessing based on: (1) binning, (2) Kolmogorov-Smirnov test, (3) restriction of coefficient of variation and (4) wavelet analysis. Subsequently, support vector machines were used for classification. The developed method achieves an average sensitivity of 97.38% (sd = 0.0125) and an average specificity of 93.30% (sd = 0.0174) in 1000 independent k-fold cross-validations, where k = 2, ..., 10.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available