4.6 Article

Effects of maternal hypoxia or nutrient restriction during pregnancy on endothelial function in adult male rat offspring

Journal

JOURNAL OF PHYSIOLOGY-LONDON
Volume 565, Issue 1, Pages 125-135

Publisher

WILEY
DOI: 10.1113/jphysiol.2005.084889

Keywords

-

Ask authors/readers for more resources

Compromised fetal growth impairs vascular function; however, it is unclear whether chronic hypoxia in utero affects adult endothelial function. We hypothesized that maternal hypoxia (H, 12% O-2, n = 9) or nutrient restriction (NR, 40% of control, n = 7) imposed from day 15-21 pregnancy in rats would impair endothelial function in adult male offspring (relative to control, C, n = 10). Using a wire myograph, endothelium-dependent relaxation in response to methacholine was assessed in small mesenteric arteries from 4- and 7-month-old (mo) male offspring. Nitric oxide (NO) mediation of endothelium-dependent relaxation was evaluated using N-omega-nitro-L-arginine methyl ester (L-NAME; NO synthase inhibitor). Observed differences in the NO pathway at 7 months were investigated using exogenous superoxide dismutase (SOD) to reduce NO scavenging, and sodium nitroprusside (SNP; NO donor) to assess smooth muscle sensitivity to NO. Sensitivity to methacholine-induced endothelium-dependent relaxation was reduced in H offspring at 4 months (P < 0.05), but was not different among groups at 7 months. L-NAME reduced methacholine sensitivity in C (P < 0.01), H (P < 0.01) and NR (P < 0.05) offspring at 4 months, but at 7 months L-NAME reduced sensitivity in C (P < 0.05), tended to in NR (P = 0.055) but had no effect in H offspring. SOD did not alter sensitivity to methacholine in C, but increased sensitivity in H offspring (P < 0.01). SNP responses did not differ among groups. In summary, prenatal hypoxia, but not nutrient restriction impaired endothelium-dependent relaxation at 4 months, and reduced NO mediation of endothelial function at 7 months, in part through reduced NO bio-availability. Distinct effects following reduced maternal oxygen versus nutrition suggest that decreased oxygen supply during fetal life may specifically impact adult vascular function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available