4.7 Article

The effects of differential rotation on the magnetic structure of the solar corona: Magnetohydrodynamic simulations

Journal

ASTROPHYSICAL JOURNAL
Volume 625, Issue 1, Pages 463-473

Publisher

IOP PUBLISHING LTD
DOI: 10.1086/429268

Keywords

MHD; solar wind; sun : activity; sun : corona; sun : magnetic fields

Ask authors/readers for more resources

Coronal holes are magnetically open regions from which the solar wind streams. Magnetic reconnection has been invoked to reconcile the apparently rigid rotation of coronal holes with the differential rotation of magnetic flux in the photosphere. This mechanism might also be relevant to the formation of the slow solar wind, the properties of which seem to indicate an origin from the opening of closed magnetic field lines. We have developed a global MHD model to study the effect of differential rotation on the coronal magnetic field. Starting from a magnetic flux distribution similar to that of Wang and coworkers, which consists of a bipolar magnetic region added to a background dipole field, we applied differential rotation over a period of 5 solar rotations. The evolution of the magnetic field and of the boundaries of coronal holes are in substantial agreement with the findings of Wang and coworkers. We identified examples of interchange reconnection and other changes of topology of the magnetic field. Possible consequences for the origin of the slow solar wind are also discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available