4.6 Article

Reduction of unusual iron-sulfur clusters in the H2-sensing regulatory Ni-Fe hydrogenase from Ralstonia eutropha H16

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 20, Pages 19488-19495

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500601200

Keywords

-

Ask authors/readers for more resources

The regulatory Ni-Fe hydrogenase (RH) from Ralstonia eutropha functions as a hydrogen sensor. The RH consists of the large subunit HoxC housing the Ni-Fe active site and the small subunit HoxB containing Fe-S clusters. The heterolytic cleavage of H-2 at the Ni-Fe active site leads to the EPR-detectable Ni-C state of the protein. For the first time, the simultaneous but EPR-invisible reduction of Fe-S clusters during Ni-C state formation was demonstrated by changes in the UV-visible absorption spectrum as well as by shifts of the iron K-edge from x-ray absorption spectroscopy in the wildtype double dimeric RHWT [HoxBC](2) and in a monodimeric derivative designated RHstop lacking the C-terminal 55 amino acids of HoxB. According to the analysis of iron EXAFS spectra, the Fe-S clusters of HoxB pronouncedly differ from the three Fe-S clusters in the small subunits of crystallized standard Ni-Fe hydrogenases. Each HoxBC unit of RHWT seems to harbor two [2Fe-2S] clusters in addition to a 4Fe species, which may be a [4Fe-3S-3O] cluster. The additional 4Fe-cluster was absent in RHstop. Reduction of Fe-S clusters in the hydrogen sensor RH may be a first step in the signal transduction chain, which involves complex formation between [HoxBC](2) and tetrameric HoxJ protein, leading to the expression of the energy converting Ni-Fe hydrogenases in R. eutropha.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available