4.5 Article

The Sanchez-Lacombe lattice fluid model for the modeling of solids in supercritical lupids

Journal

FLUID PHASE EQUILIBRIA
Volume 232, Issue 1-2, Pages 219-229

Publisher

ELSEVIER
DOI: 10.1016/j.fluid.2005.03.015

Keywords

model; equation of state; solid-fluid equilibria; mixture

Ask authors/readers for more resources

The Sanchez-Lacombe equation of state is known to describe the thermodynamic properties of molecular fluids of arbitrary size, especially polymer-solvent phase behavior. However, it is rarely used for modeling solid-supercritical fluid equilibria. In this work, it is shown that a proper estimation of the EoS characteristic parameters together with a thermodynamically consistent expression of fugacity coefficients allows a satisfactory correlation of the solubility of solids in the supercritical phase. Binary mixtures containing carbon dioxide, ethane, ethylene and xenon were considered for this purpose. In a first step, the consistency of experimental data was checked using variance analysis. Then, different mixing rules were considered and results compared with those obtained with the Peng-Robinson equation. Finally, the lower and upper boundaries of the solid-liquid-vapor regions (LCEP and UCEP) were also determined and compared with experimental values. (c) 2005 Elsevier B.V All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available