4.6 Article

Regulation of MDR1 expression and drug resistance by a positive feedback loop involving hyaluronan, phosphoinositide 3-kinase, and ErbB2

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 280, Issue 21, Pages 20310-20315

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M500737200

Keywords

-

Funding

  1. NCI NIH HHS [CA73839, CA82867] Funding Source: Medline
  2. NCRR NIH HHS [RR-17698] Funding Source: Medline

Ask authors/readers for more resources

Multidrug resistance is a potent barrier to effective, long term therapy in cancer patients. It is frequently attributed to enhanced expression of multidrug transporters or to the action of receptor kinases, such as ErbB2, and downstream anti-apoptotic signaling pathways, such as the phosphoinositide 3-kinase/Akt pathway. However, very few connections have been made between receptor kinases or anti-apoptotic pathways and multidrug transporter expression or function. Data presented herein show that constitutive interaction of the pericellular polysaccharide, hyaluronan, with its receptor, CD44, regulates assembly and activation of an ErbB2-containing signaling complex, which in turn stimulates phosphoinositide 3-kinase activity in multi-drug-resistant MCF-7/Adr human breast carcinoma cells. Phosphoinositide 3-kinase activates Akt and downstream anti-apoptotic events, which contribute to drug resistance. However, hyaluronan and phosphoinositide 3-kinase stimulate expression of the multidrug transporter, MDR1 (P-glycoprotein), in an interdependent, but Akt-independent, manner. Furthermore, constitutively active phosphoinositide 3-kinase, but not Akt, stimulates hyaluronan production. These Akt-independent effects are dominant over the effects of Akt on doxorubicin resistance in MCF-7/Adr cells. Thus hyaluronan, phosphoinositide 3-kinase, and ErbB2 form a positive feedback loop that strongly amplifies MDR1 expression and regulates drug resistance in these cells. This pathway may also be important in progression of other malignant characteristics. These results illustrate the potential importance of hyaluronan as a therapeutic target in multidrug-resistant carcinomas.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available