4.8 Article

A quantum mechanical polarizable force field for biomolecular interactions

Publisher

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0502962102

Keywords

drug design; quantum mechanics

Ask authors/readers for more resources

We introduce a quantum mechanical polarizable force field (QMPFF) fitted solely to QM data at the MP2/aTZ(-hp) level. Atomic charge density is modeled by point-charge nuclei and floating exponentially shaped electron clouds. The functional form of interaction energy parallels quantum mechanics by including electrostatic, exchange, induction, and dispersion terms. Separate fitting of each term to the counterpart calculated from high-quality QM data ensures high transferability of QMPFF parameters to different molecular environments, as well as accurate fit to a broad range of experimental data in both gas and liquid phases. QMPFF, which is much more efficient than ab initio QM, is optimized for the accurate simulation of biomolecular systems and the design of drugs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available