4.6 Article

CHFR promoter hypermethylation in colon cancer correlates with the microsatellite instability phenotype

Journal

CARCINOGENESIS
Volume 26, Issue 6, Pages 1152-1156

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/carcin/bgi058

Keywords

-

Categories

Ask authors/readers for more resources

A subset of sporadic colon cancers has been shown to have microsatellite instability caused by an epigenetic inactivation of the MLH1 gene by hypermethylation of the the CpG island in its promoter region. We report here that in colorectal cancer, inactivation of the MLH1 gene is frequently accompanied by hypermethylation of the CpG island in the promoter of the mitotic gene checkpoint with forkhead and ring finger domains (CHFR). This was first observed in the colon cancer cell lines HCT-116, DLD-1, RKO and HT29. Among the 61 primary colon cancer samples studied, hypermethylation of the MLH1 and the CHFR promoter was found in 31% of the tumors. In 68% of all primary cancers (13/19) with MLH1 promoter hypermethylation, hypermethylation of the CHFR promoter was observed as well (P-value < 0.0001, Fisher's two-sided exact). Hypermethylation of the HLTF, MGMT, RASSF1, APC, p14 and p16 promoter regions were also frequent events, being observed in 48% (28/58), 40% (26/64), 21% (14/64), 50% (31/62), 43% (26/60) and 56% (35/63), respectively. However, methylation of these genes was not associated with methylation of either MLH1 or CHFR. The observed methylation profile was unrelated to Duke's stage. The coordinated loss of both mismatch repair caused by methylation of MLH1 and loss of checkpoint control associated with methylation of CHFR suggests the potential to overcome cell cycle checkpoints, which may lead to an accumulation of mutations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available