4.6 Article

Topographic and laminar maturation of striate cortex in early postnatal marmoset monkeys, as revealed by neurofilament immunohistochemistry

Journal

CEREBRAL CORTEX
Volume 15, Issue 6, Pages 740-748

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhh175

Keywords

postnatal development; primate; primary visual cortex; SMI-32; visuotopy

Categories

Ask authors/readers for more resources

The maturation of pyramidal neurons in the primary visual cortex (V1) of marmoset monkeys was investigated using an antibody (SMI-32) to non-phosphorylated neurofilament protein (NNF). Analysis of animals aged between birth and postnatal day 91 (PD 91, which corresponds approximately to the peak of synaptogenesis in this species) revealed discrete changes in both the laminar and the areal distribution of NNF. At PD 0, the upper part of layer 6 contained darkly labelled neurons and associated neuropil, including axons. In this layer a centroperipheral gradient, with more labelled cells in the foveal representation, was apparent at PD 0. This topographic gradient gradually disappeared, and by PD 91 a similar density of labelled layer 6 cells was observed throughout V1. Labelled cells were not apparent in layer 3C until PD 7, and were not distributed according to a topographic gradient. Labelled cells were first observed in layer 3B alpha at PD 28, when they formed a centroperipheral gradient similar to that seen in layer 6. This gradient was still evident in an adult animal. These results demonstrate an inside-out profile of postnatal cortical development, with the topographic pattern of maturation of V1 mimicking the centroperipheral gradient of maturation in the retina.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available