4.7 Article

MSAP enhances migration of C6 glioma cells through phosphorylation of the myosin regulatory light chain

Journal

CELLULAR AND MOLECULAR LIFE SCIENCES
Volume 62, Issue 11, Pages 1260-1266

Publisher

SPRINGER BASEL AG
DOI: 10.1007/s00018-005-5055-x

Keywords

MSAP; myosin regulatory light chain; phosphorylation; C6 glioma; cell motility

Ask authors/readers for more resources

A key regulatory mechanism in cell motility is the control of myosin activity, which in non-muscle cells is determined by phosphorylation of the myosin regulatory light chain (MRLC). Here we show that MRLC-interacting protein (MIR)-interacting saposin-like protein (MSAP) enhances cell spreading in fibroblasts and migration of rat C6 glioma cells through increases in MRLC phosphorylation. Overexpression of MSAP enhanced the motility of glioma cells measured in matrigel invasion chambers and using a scratch assay. Downregulation of MSAP by RNA interference significantly decreased glioma cell migration and phosphorylation of MRLC. Inhibition of the corresponding MRLC kinase by ML-7 did not affect migration of MSAP-overexpressing cells. The present results show that MSAP controls glioma cell migration via enhancement of MRLC phosphorylation. This effect is independent of the activity of MRLC kinase. Thus, MSAP is a novel modulator of cell motility that influences migration of glioma cells and possibly other tumors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available