4.8 Article

Development and perspective in vanadium flow battery modeling

Journal

APPLIED ENERGY
Volume 132, Issue -, Pages 254-266

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2014.06.077

Keywords

Vanadium flow battery; Modeling approach; Modeling application

Funding

  1. '973' project of MOST (Ministry of Science and Technology of China) [2010CB227205]

Ask authors/readers for more resources

Vanadium flow battery (VFB) is a promising candidate for large scale energy storage applications. Some critical challenges of VFB technology, especially for the issues unavailable via the experimental research, have motivated the use of VFB modeling, which can perform more efficient battery optimization than the extensive laboratory testing. Thereby, VFB modeling is quite necessary for the battery research. Based on the research scalability, the modeling approach in this review can be roughly grouped into three categories: macro approach, micro approach, and molecular/atomic approach. The modeling applications for VFB prediction can be classified into four levels: market, stack and system, cell, and material, presenting a decreasing scalability. The modeling approach and the modeling application along with their effectiveness and limitations in VFBs are discussed. A modeling perspective is also provided, highlighting the key role of the models at the cell and material level in battery research, and outlining the future direction in battery modeling for the VFB commercialization. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available