4.7 Article

Comparison of voter and Glauber ordering dynamics on networks

Journal

PHYSICAL REVIEW E
Volume 71, Issue 6, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.71.066107

Keywords

-

Ask authors/readers for more resources

We study numerically the ordering process of two very simple dynamical models for a two-state variable on several topologies with increasing levels of heterogeneity in the degree distribution. We find that the zero-temperature Glauber dynamics for the Ising model may get trapped in sets of partially ordered metastable states even for finite system size, and this becomes more probable as the size increases. Voter dynamics instead always converges to full order on finite networks, even if this does not occur via coherent growth of domains. The time needed for order to be reached diverges with the system size. In both cases the ordering process is rather insensitive to the variation of the degreee distribution from sharply peaked to scale free.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available