4.6 Article

Deformation mechanisms responsible for the high ductility in a Mg AZ31 alloy analyzed by electron backscattered diffraction

Publisher

SPRINGER
DOI: 10.1007/s11661-005-0235-8

Keywords

-

Ask authors/readers for more resources

The microstructural evolution during tensile deformation of an AZ31 alloy with grain size ranging from 17 to 40 mm, at intermediate temperatures, has been studied using electron backscattered diffraction (EBSD) and optical microscopy (OM) as the main characterization tools. Two deformation regimes could be distinguished. In the high-strain-rate regime, the stress exponent was found to be about 6, and the activation energy is close to that for Mg self-diffusion. These values are indicative of climb-controlled creep. In the lower strain rate range, elongations higher than 300 pct were measured. In this range, significant dynamic grain growth takes place during the test, and thus, the predominant deformation mechanisms have been investigated by means of strain-rate-change tests. It was found that the stress exponent varied during the test between 1.7 and 2.5, while the activation energy remains close to that for grain-boundary diffusion. The EBSD analysis revealed, additionally, the appearance of low to moderately misoriented boundaries that tend to lay perpendicular to the tensile axis. The enhanced ductility of this AZ31 alloy in this regime is attributed to the operation of a sequence of deformation mechanisms. Initially, grain-boundary sliding governs deformation; once dynamic grain growth occurs, dislocation slip becomes gradually more important. Dislocation interaction gives rise to the appearance of new interfaces by continuous dynamic recrystallization (CDRX).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available