4.8 Article

LCA of biomass-based energy systems: A case study for Denmark

Journal

APPLIED ENERGY
Volume 99, Issue -, Pages 234-246

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2012.03.006

Keywords

LCA; LUC; Biomass potential; Energy system analysis; Biodiesel; Environmental impacts

Funding

  1. Danish Research Council [CEESA 2104-06-0007]
  2. Technical University of Denmark

Ask authors/readers for more resources

Decrease of fossil fuel consumption in the energy sector is an important step towards more sustainable energy production. Environmental impacts related to potential future energy systems in Denmark with high shares of wind and biomass energy were evaluated using life-cycle assessment (LCA). Based on the reference year 2008, energy scenarios for 2030 and 2050 were assessed. For 2050 three alternatives for supply of transport fuels were considered: (1) fossil fuels, (2) rapeseed based biodiesel, and (3) Fischer-Tropsch based biodiesel. Overall, the results showed that greenhouse gas emissions per PJ energy supplied could be significantly reduced (from 68 to 17 Gg CO2-eq/PJ) by increased use of wind and residual biomass resources as well as by electrifying the transport sector. Energy crops for production of biofuels and the use of these biofuels for heavy terrestrial transportation were responsible for most environmental impacts in the 2050 scenarios, in particular upstream impacts from land use changes (LUCs), fertilizer use and NOx emissions from the transport sector were critical. Land occupation (including LUC effects) caused by energy crop production increased to a range of 600-2100 x 10(6) m(2)/PJ depending on the amounts and types of energy crops introduced. Use of fossil diesel in the transport sector appeared to be environmentally preferable over biodiesel for acidification, aquatic eutrophication and land occupation. For global warming, biodiesel production via Fischer-Tropsch was comparable with fossil diesel. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available