4.7 Article

Small molecules VP-14637 and JNJ-2408068 inhibit respiratory syncytial virus fusion by similar mechanisms

Journal

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY
Volume 49, Issue 6, Pages 2460-2466

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/AAC.49.6.2460-2466.2005

Keywords

-

Ask authors/readers for more resources

Here we present data on the mechanism of action of VP-14637 and JNJ-2408068 (formerly R-170591), two small-molecule inhibitors of respiratory syncytial virus (RSV). Both inhibitors exhibited potent antiviral activity with 50% effective concentrations (EC50S) of 1.4 and 2.1 nM, respectively. A similar inhibitory effect was observed in a RSV-mediated cell fusion assay (EC50 = 5.4 and 0.9 nM, respectively). Several drug-resistant RSV variants were selected in vitro in the presence of each compound. All selected viruses exhibited significant cross -resistance to both inhibitors and contained various single amino acid substitutions in two distinct regions of the viral F protein, the heptad repeat 2 (HR2; mutations D486N, E487D, and F488Y), and the intervening domain between HR1 and HR2 (mutation K3991 and T400A). Studies using [H-3]VP-14637 revealed a specific binding of the compound to RSV-infected cells that was efficiently inhibited by JNJ-2408068 (50% inhibitory concentration = 2.9 nM) but not by the HR2-derived peptide T-118. Further analysis using a transient T7 vaccinia expression system indicated that RSV F protein is sufficient for this interaction. F proteins containing either the VT-14637 or JNJ-2408068 resistance mutations exhibited greatly reduced binding of [H-3]VP-14637. Molecular modeling analysis suggests that both molecules may bind into a small hydrophobic cavity in the inner core of F protein, interacting simultaneously with both the HR1 and HR2 domains. Altogether, these data indicate that VP-14637 and JNJ-2408068 interfere with RSV fusion through a mechanism involving a similar interaction with the F protein.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available