4.8 Article

Two-dimensional flame temperature and emissivity measurements of pulverized oxy-coal flames

Journal

APPLIED ENERGY
Volume 95, Issue -, Pages 38-44

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2012.01.062

Keywords

Coal flame temperature; Oxy-combustion; Two-color pyrometry

Ask authors/readers for more resources

A broadband, RGB, two-color pyrometry technique for measuring the flame temperature and total emissivity of a two-dimensional image of a coal flame has been developed and used on an oxy-coal flame. The method uses a single, relatively inexpensive, RGB, digital camera. The camera software permits the light intensities of the red, green, and blue light collected for each pixel to be recorded separately. The response of each pixel was calibrated for each color using a blackbody radiating cavity and a monochrometer, which enabled an absolute, broadband emission measurement. The image obtained by the camera was processed to produce a temperature and total emissivity for each pixel. Two spectral emissivity models were explored for use in determining the temperature and emissivity: a Gray model and Hottel and Broughton's soot emissivity model. Significant differences of 7.1% in average temperature and 24.2% in average emissivity were found. While neither model is ideal for the entire coal flame, the Hottel and Broughton model was selected for future image processing because the images and analysis suggested soot was the more dominant emitter for most of the image. Images were obtained in a 150 kWth pulverized-coal reactor at two different mixture oxidizer ratios of O-2/CO2. The addition of CO2 decreased the average flame temperature from 2183 K to 2022 K and reduced the average emissivity from 0.59 to 0.13. The increase in CO2 lowered the temperature by increasing the dilution. The increased flow rate caused increased mixing, which reduced soot formation and thus the emissivity. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available