4.4 Article

Lean buffering in serial production lines with non-exponential machines

Journal

OR SPECTRUM
Volume 27, Issue 2-3, Pages 195-219

Publisher

SPRINGER
DOI: 10.1007/s00291-004-0187-1

Keywords

lean production systems; serial lines; non-exponential machine reliability model; coefficients of variation; empirical law

Ask authors/readers for more resources

In this paper, lean buffering (i.e., the smallest level of buffering necessary and sufficient to ensure the desired production rate of a manufacturing system) is analyzed for the case of serial lines with machines having Weibull, gamma, and log-normal distributions of up- and downtime. The results obtained show that: (1) the lean level of buffering is not very sensitive to the type of up- and downtime distributions and depends mainly on their coefficients of variation, CVup and CVdown; (2) the lean level of buffering is more sensitive to CVdown than to CVup but the difference in sensitivities is not too large (typically, within 20%). Based on these observations, an empirical law for calculating the lean level of buffering as a function of machine efficiency, line efficiency, the number of machines in the system, and CVup and CVdown is introduced. It leads to a reduction of lean buffering by a factor of up to 4, as compared with that calculated using the exponential assumption. It is conjectured that this empirical law holds for any unimodal distribution of up- and downtime, provided that CVup and CVdown are less than 1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available