4.7 Article

PIRLs: A novel class of plant intracellular leucine-rich repeat proteins

Journal

PLANT AND CELL PHYSIOLOGY
Volume 46, Issue 6, Pages 913-922

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pci097

Keywords

Arabidopsis thaliana; G-proteins; gene knockouts; leucine-rich repeats; linker protein; signal transduction

Ask authors/readers for more resources

Leucine-rich repeat (LRR) proteins feature tandem leucine-rich motifs that form a protein-protein interaction domain. Plants contain diverse classes of LRR proteins, many of which take part in signal transduction. We have identified a novel family of nine Arabidopsis LRR proteins that, based on predicted intracellular location and LRR motif consensus sequence, are related to Ras-binding LRR proteins found in signaling complexes in animals and yeast. This new class has been named plant intracellular Ras group-related LRR proteins (PIRLs). We have characterized PIRL cDNAs, rigorously defined gene and protein annotations, investigated gene family evolution and surveyed mRNA expression. While LRR regions suggested a relationship to Ras group LRR proteins, outside of their LRR domains PIRLs differed from Ras group proteins, exhibiting N- and C-terminal regions containing low complexity stretches and clusters of charged amino acids. PIRL genes grouped into three subfamilies based on sequence relationships and gene structures. Related gene pairs and dispersed chromosomal locations suggested family expansion by ancestral genomic or segmental duplications. Expression surveys revealed that all PIRL mRNAs are actively transcribed, with three expressed differentially in leaves, roots or flowers. These results define PIRLs as a distinct, plant-specific class of intracellular LRR proteins that probably mediate protein interactions, possibly in the context of signal transduction. T-DNA knock-out mutants have been isolated as a starting point for systematic functional analysis of this intriguing family.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available