4.7 Article

A procedure for drainage network identification from geomorphology and its application to the prediction of the hydrologic response

Journal

ADVANCES IN WATER RESOURCES
Volume 28, Issue 6, Pages 567-581

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.advwatres.2004.11.013

Keywords

geomorphology; hydrologic response; drainage network; drainage density

Ask authors/readers for more resources

Identifying channel initiation points is central to geomorphology and hydrology as they relate morphology, climate, and soil properties at the boundary between different surface runoff paths. Since catchment response is strongly influenced by the dynamics of water movement on the hillslope and in the channel, rainfall-runoff modeling is one of the fields in which improving the identification of channel initiation can lead to benefits. Among the various filtering criteria that can be found in the literature for channel recognition from digital elevation models, the one using contributing area and topographic slope shows interesting features in this context. Nevertheless, the area-slope criterion has been poorly applied. This is mainly due to the difficulties in objectively defining appropriate threshold values. This study proposes a new procedure to assess the area-slope threshold value. The resulting channel network is then used as input to a semi-distributed, event-based rainfall-runoff model able to describe severe rainfall events in small, steep basins. This model accounts for network and hillslope contributions to the total dispersion in the routing process, a key factor in determining the main features of the hydrologic response. In a geomorphologically homogeneous region, the set of model parameters shows interesting invariance properties with respect to storm and basin characteristics. (c) 2005 Published by Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available