4.5 Article

Gene expression in rat Leydig cells during development from the progenitor to adult stage: A cluster analysis

Journal

BIOLOGY OF REPRODUCTION
Volume 72, Issue 6, Pages 1405-1415

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1095/biolreprod.104.037499

Keywords

developmental biology; gene regulation; Leydig cells; luteinizing hormone; steroid hormone receptors

Funding

  1. NICHD NIH HHS [HD-32588] Funding Source: Medline

Ask authors/readers for more resources

The postnatal development of Leydig cells can be divided into three distinct stages: initially they exist as fibroblast-like progenitor Leydig cells (PLCs) appearing in the testis by Days 14-21; subsequently, by Day 35, they become immature Leydig cells (lLCs) acquiring steroidogenic organelle structure and enzyme activities but metabolizing most of the testosterone they produce; finally, as adult Leydig cells (ALCs) by Day 90, they actively produce testosterone. The factors controlling proliferation and differentiation of Leydig cells remain largely unknown, and the aim of the present study was to identify changes in gene expression during development through cDNA array analysis of PLCs, ILCs, and ALCs. By cluster analysis, it was determined that the transitions from PLC to ILC to ALC were associated with downregulation of mRNAs corresponding to 107 genes. The downregulated genes included cell-cycle regulators, e.g., cyclin D1 (Ccnd1); growth factors, e.g., basic fibroblast growth factor (Fgf2); growth-factor-related receptors, e.g., platelet-derived growth factor alpha receptor (Pdgfra); oncogenes, e.g., kit oncogene (Kit); and transcription factors, e.g., early growth response 1 (Egr1). Conversely, expression levels of 264 genes were increased by at least twofold. Most of these were related to differentiated function and included steroidogenic enzymes, e.g., lip-hydroxysteroid dehydrogenase 2 (Hsd11b2); neurotransmitter receptors, e.g., acetylcholine receptor nicotinic alpha 4 (Chrna4); stress response factors, e.g., glutathione transferase 8 (Gsta4); and protein turnover enzymes, e.g., tissue inhibitor of metalloproteinase 2 (Timp2). The detection of Hsd11b2 mRNA in the array was the first indication that this gene is expressed in Leydig cells, and parallel increases in Hsd11b2 mRNA and enzyme activity were recorded. Thus, gene profiling demonstrates that postnatal development is associated with changes in the expression levels of several different clusters of genes consistent with the processes of Leydig cell growth and differentiation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available