4.5 Article

Vascular endothelial wound closure under shear stress: role of membrane fluidity and flow-sensitive ion channels

Journal

JOURNAL OF APPLIED PHYSIOLOGY
Volume 98, Issue 6, Pages 2355-2362

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.01136.2004

Keywords

cell migration; flow; wound healing; mechanotransduction; cell spreading

Ask authors/readers for more resources

Sufficiently rapid healing of vascular endothelium following injury is essential for preventing further pathological complications. Recent work suggests that fluid dynamic shear stress regulates endothelial cell (EC) wound closure. Changes in membrane fluidity and activation of flow-sensitive ion channels are among the most rapid endothelial responses to flow and are thought to play an important role in EC responsiveness to shear stress. The goal of the present study was to probe the role of these responses in bovine aortic EC ( BAEC) wound closure under shear stress. BAEC monolayers were mechanically wounded and subsequently subjected to either high ( 19 dyn/cm(2)) or low ( 3 dyn/cm(2)) levels of steady shear stress. Image analysis was used to quantify cell migration and spreading under both flow and static control conditions. Our results demonstrate that, under static conditions, BAECs along both wound edges migrate at similar velocities to cover the wounded area. Low shear stress leads to significantly lower BAEC migration velocities, whereas high shear stress results in cells along the upstream edge of the wound migrating significantly more rapidly than those downstream. The data also show that reducing BAEC membrane fluidity by enriching the cell membrane with exogenous cholesterol significantly slows down both cell spreading and migration under flow and hence retards wound closure. Blocking flow-sensitive K and Cl channels reduces cell spreading under flow but has no impact on cell migration. These findings provide evidence that membrane fluidity and flow-sensitive ion channels play distinct roles in regulating EC wound closure under flow.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available