4.7 Article

Effect of desferrioxamine and metals on the hydroxylases in the oxygen sensing pathway

Journal

FASEB JOURNAL
Volume 19, Issue 8, Pages 1308-+

Publisher

WILEY
DOI: 10.1096/fj.04-3399fje

Keywords

hypoxia-inducible transciption factor; prolyl 4-hydroxylase; asparaginyl hydroxylase

Ask authors/readers for more resources

/ Hypoxia-inducible transcription factor (HIF) is regulated by two oxygen-dependent events that are catalyzed by the HIF prolyl 4-hydroxylases (HIF-P4Hs) and HIF asparaginyl hydroxylase (FIH). We have purified the three recombinant human HIF-P4Hs to near homogeneity and characterized their catalytic properties and inhibition and those of FIH. The specific activities of the HIF-P4Hs were at least 40-50 mol/ mol/ min, and they and FIH catalyzed an uncoupled decarboxylation of 2-oxoglutarate in the absence of any peptide substrate. The purified HIF-P4Hs showed considerable activities even without added Fe2+, their apparent Km values for iron being markedly lower than that of FIH. Desferrioxamine and several metals were effective inhibitors of FIH, but surprisingly, ineffective inhibitors of the HIF-P4Hs in vitro, especially of HIF-P4H-2. Desferrioxamine and cobalt were more effective in cultured insect cells synthesizing recombinant HIF-P4H-2, but complete inhibition was not achieved and most of the enzyme was inactivated irreversibly. Cobalt also rapidly inactivated HIF-P4Hs during storage at 4 degrees C. The well-known stabilization of HIF-alpha by cobalt and nickel is thus not due to a simple competitive inhibition of HIF-P4Hs. The effective inhibition of FIH by these metals and zinc probably leads to full transcriptional activity of HIF-alpha even in concentrations that produce no stabilization of HIF-alpha.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available