4.6 Article

Homeostatic synaptic plasticity can explain post-traumatic epileptogenesis in chronically isolated neocortex

Journal

CEREBRAL CORTEX
Volume 15, Issue 6, Pages 834-845

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1093/cercor/bhh184

Keywords

brain trauma; computational model; deafferentation; epilepsy; injury; slow oscillation

Categories

Funding

  1. Howard Hughes Medical Institute Funding Source: Medline
  2. NINDS NIH HHS [NS40522] Funding Source: Medline

Ask authors/readers for more resources

Chronically isolated neocortex develops chronic hyperexcitability and focal epileptogenesis in a period of days to weeks. The mechanisms operating in this model of post-traumatic epileptogenesis are not well understood. We hypothesized that the spontaneous burst discharges recorded in chronically isolated neocortex result from homeostatic plasticity (a mechanism generally assumed to stabilize neuronal activity) induced by low neuronal activity after deafferentation. To test this hypothesis we constructed computer models of neocortex incorporating a biologically based homeostatic plasticity rule that operates to maintain firing rates. After deafferentation, homeostatic upregulation of excitatory synapses on pyramidal cells, either with or without concurrent downregulation of inhibitory synapses or upregulation of intrinsic excitability, initiated slowly repeating burst discharges that closely resembled the epileptiform burst discharges recorded in chronically isolated neocortex. These burst discharges lasted a few hundred ms, propagated at 1-3 cm/s and consisted of large (10-15 mV) intracellular depolarizations topped by a small number of action potentials. Our results support a role for homeostatic synaptic plasticity as a novel mechanism of post-traumatic epileptogenesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available