4.8 Article

Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes

Journal

APPLIED ENERGY
Volume 86, Issue 12, Pages 2592-2597

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2009.04.004

Keywords

Hybrid PV/T system; Solar energy; Water heater; Exergy analysis; Constant flow rate; Constant collection temperature

Ask authors/readers for more resources

In this communication, an analytical expression for the water temperature of an integrated photovoltaic thermal solar (IPVTS) water heater under constant flow rate hot water withdrawal has been obtained. Analysis is based on basic energy balance for hybrid flat plate collector and storage tank, respectively, in the terms of design and climatic parameters. Further, an analysis has also been extended for hot water withdrawal at constant collection temperature. Numerical computations have been carried out for the design and climatic parameters of the system used by Huang et al. [Huang BJ, Lin TH, Hung WC, Sun FS. Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 2001; 70(5): 443-8]. It is observed that the daily overall thermal efficiency of IPVTS system increases with increase constant flow rate and decrease with increase of constant collection temperature. The exergy analysis of IPVTS system has also been carried out. It is further to be noted that the overall exergy and thermal efficiency of an integrated photovoltaic thermal solar system (IPVTS) is maximum at the hot water withdrawal flow rate of 0.006 kg/s. The hourly net electrical power available from the system has also been evaluated. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available