4.8 Article

Life cycle assessment of palm biodiesel: Revealing facts and benefits for sustainability

Journal

APPLIED ENERGY
Volume 86, Issue -, Pages S189-S196

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.apenergy.2009.04.014

Keywords

Biodiesel; Transesterification; Life cycle assessment; Energy balance; Green house gas

Funding

  1. Ministry of Science, Technology and Innovation (Malaysia) [03-01-05-SF0138]
  2. Universiti Sains Malaysia

Ask authors/readers for more resources

Similarity between the properties of biodiesel and petroleum-derived diesel has made the former one of the most promising alternatives to a renewable and sustainable fuel for the transportation sector. In Malaysia, palm oil can be a suitable feedstock for the production of biodiesel due to its abundant availability and low production cost. However, not many assessments have been carried out regarding the impacts of palm biodiesel on the environment. Hence, in this study, life cycle assessment (LCA) was conducted for palm biodiesel in order to investigate and validate the popular belief that palm biodiesel is a green and sustainable fuel. The LCA study was divided into three main stages, namely agricultural activities, oil milling and transesterification process for the production of biodiesel. For each stage, the energy balance and green house gas assessments were presented and discussed. These are important data for the techno-economical and environmental feasibility evaluation of palm biodiesel. The results obtained for palm biodiesel were then compared with rapeseed biodiesel. From this study, it was found that the utilization of palm biodiesel would generate an energy yield ratio of 3.53 (output energy/input energy), indicating a net positive energy generated and ensuring its sustainability. The energy ratio for palm biodiesel was found to be more than double that of rapeseed biodiesel which was estimated to be only 1.44, thereby indicating that palm oil would be a more sustainable feedstock for biodiesel production as compared to rapeseed oil. Moreover, combustion of palm biodiesel was found to be more environment-friendly than petroleum-derived-diesel as a significant 38% reduction Of CO2 emission can be achieved per liter combusted. (C) 2009 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available