4.0 Article

Strains of the heterotrophic flagellate Bodo designis from different environments vary considerably with respect to salinity preference and SSU rRNA gene composition

Journal

PROTIST
Volume 156, Issue 1, Pages 97-112

Publisher

ELSEVIER GMBH
DOI: 10.1016/j.protis.2004.12.001

Keywords

Bodo designis; growth rates; maximum parsimony; Bayesian analysis; phylogeny; salinity; SSU rRNA gene

Categories

Ask authors/readers for more resources

The morpho species Bodo designis is widespread and abundant globally in highly contrasting terrestrial and aquatic ecosystems. Whether the forms of Bodo designis from contrasting environments are conspecific, i.e. largely genetically identical, or whether they merely share the external morphology is presently not known. We examined the ability of different strains of Bodo designis isolated from different environments at different geographical sites to survive and grow at a salinity range of 0.5-45 parts per thousand. The Bodo designis strains from marine, freshwater, and terrestrial environments showed a different ability to cope with altered physiological conditions. Most of the tested strains were only able to tolerate a small salinity range, whereas others were able to withstand all tested salinity levels. We further examined the phylogenetic relationship between the different strains by sequencing the small subunit (SSU) rRNA gene. The resulting phylogenetic analyses suggest a huge genetic variation within Bodo designis, and also imply that Dimastigella and Rhyncomonas are developed inside Bodo designis. If the biological species concept is used, the genetic differences as well as the physiological barriers between the different strains of Bodo designis, would suggest that they should be assigned to different species. (c) 2005 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available