4.5 Article

Close encounters: regulation of vertebrate skeletal myogenesis by cell-cell contact

Journal

JOURNAL OF CELL SCIENCE
Volume 118, Issue 11, Pages 2355-2362

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/jcs.02397

Keywords

muscle development; cell adhesion; cell differention; signal transduction; cadherin; immunoglobulin superfamily

Categories

Ask authors/readers for more resources

Cells of the vertebrate skeletal muscle lineage develop in a highly ordered process that includes specification, migration and differentiation into multinucleated myofibers. The changes in gene expression and cell morphology that occur during myogenic differentiation must be coordinated with each other in a spatiotemporal fashion; one way that this might occur is through regulation of these processes by cell-cell adhesion and resultant signaling. The past several years have witnessed the identification of molecules that are likely to be mediators of the promyogenic effects of cell-cell contact and some of the mechanisms by which they work. These include: the community factor, embryonic fibroblast growth factor (eFGF); classical cadherins, which mediate both adhesion and signaling; and cadherin-associated immunoglobulin superfamily members such as CDO, BOC and neogenin. Genetic evidence for the promyogenic roles of some of these factors is emerging. In other cases, potential compensatory or redundant functions necessitate future construction of double or triple mutants. Mechanistic studies in vitro indicate that specific cadherins and immunoglobulin superfamily proteins exert some of their effects in an interdependent fashion by signaling from a multiprotein complex found at sites of cell-cell contact.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available