4.7 Review

Quantum Zeno effect by general measurements

Journal

PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS
Volume 412, Issue 4, Pages 191-275

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.physrep.2005.03.001

Keywords

quantum Zeno effect

Ask authors/readers for more resources

It was predicted that frequently repeated measurements on an unstable quantum state may alter the decay rate of the state. This is called the quantum Zeno effect (QZE) or the anti-Zeno effect (AZE), depending on whether the decay is suppressed or enhanced. In conventional theories of the QZE and AZE, effects of measurements are simply described by the projection postulate, assuming that each measurement is an instantaneous and ideal one. However, real measurements are not instantaneous and ideal. For the QZE and AZE by such general measurements, interesting and surprising features have recently been revealed, which we review in this article. The results are based on the quantum measurement theory, which is also reviewed briefly. As a typical model, we consider a continuous measurement of the decay of an excited atom by a photodetector that detects a photon emitted from the atom upon decay. This measurement is an indirect negative-result one, for which the curiosity of the QZE and AZE is emphasized. It is shown that the form factor is renormalized as a backaction of the measurement, through which the decay dynamics is modified. In a special case of the flat response, where the detector responds to every photon mode with an identical response time, results of the conventional theories are reproduced qualitatively. However, drastic differences emerge in general cases where the detector responds only to limited photon modes. For example, against predictions of the conventional theories, the QZE or AZE may take place even for states that exactly follow the exponential decay law. We also discuss relation to the cavity quantum electrodynamics. (c) 2005 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available