4.7 Article

Basement membrane fragility underlies embryonic lethality in fukutin-null mice

Journal

NEUROBIOLOGY OF DISEASE
Volume 19, Issue 1-2, Pages 208-217

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.nbd.2004.12.018

Keywords

fukutin; alpha-dystroglycan; basement membrane

Categories

Ask authors/readers for more resources

Fukuyama-type congenital muscular dystrophy (FCMD), associated with brain malformation due to defects in neuronal migration, is caused by mutations in fukutin. Several lines of evidence suggest that the fukutin protein plays a pivotal role in synthesis of O-mannosyl sugar moieties of alpha-dystroglycan, a cell surface laminin receptor. Here, through targeted disruption of the orthologous mouse fukutin gene, we show that the fukutin protein is essential, as homozygous-null embryos die by E9.5 of gestation. Fukutin-null embryos show phenotypic diversity, features of which include growth retardation, folding of the egg cylinder, leakage of maternal red blood cells into the yolk sac cavity, and an increased number of apoptotic cells in the ectoderm. Loss of immunoreactivity against sugar moieties in alpha-dystroglycan suggests a reduced laminin-binding capacity. Ultrastructural analysis shows thin and breached basement membranes (BMs). BM fragility may underlie all of these abnormal phenotypes, and maintenance of BM function may require fukutin-mediated glycosylation of alpha-dystroglycan early in embryonic development. (c) 2005 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available