4.4 Article

The evolution of phenotypic polymorphism: Randomized strategies versus evolutionary branching

Journal

AMERICAN NATURALIST
Volume 165, Issue 6, Pages 669-681

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/429566

Keywords

genetic polymorphism; bet hedging; evolutionary branching; convergence stability; phenotypic plasticity

Ask authors/readers for more resources

A population is polymorphic when its members fall into two or more categories, referred to as alternative phenotypes. There are many kinds of phenotypic polymorphisms, with specialization in reproduction, feeding, dispersal, or protection from predators. An individual's phenotype might be randomly assigned during development, genetically determined, or set by environmental cues. These three possibilities correspond to a mixed strategy of development, a genetic polymorphism, and a conditional strategy. Using the perspective of adaptive dynamics, I develop a unifying evolutionary theory of systems of determination of alternative phenotypes, focusing on the relative possibilities for random versus genetic determination. The approach is an extension of the analysis of evolutionary branching in adaptive dynamics. It compares the possibility that there will be evolutionary branching, leading to genetic polymorphism, with the possibility that a mixed strategy evolves. The comparison is based on the strength of selection for the different outcomes. An interpretation of the resulting criterion is that genetic polymorphism is favored over random determination of the phenotype if an individual's heritable genotype is an adaptively advantageous cue for development. I argue that it can be helpful to regard genetic polymorphism as a special case of phenotypic plasticity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available