4.5 Article

Trypanosome telomeres are protected by a homologue of mammalian TRF2

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 25, Issue 12, Pages 5011-5021

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.25.12.5011-5021.2005

Keywords

-

Funding

  1. NIAID NIH HHS [R01 AI050614, AI50614] Funding Source: Medline

Ask authors/readers for more resources

Putative TTAGGG repeat-binding factor (TRF) homologues in the genomes of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major were identified. They have significant sequence similarity to higher eukaryotic TRFs in their C-terminal DNA-binding myb domains but only weak similarity in their N-terminal domains. T. brucei TRF (tbTRF) is essential and was shown to bind to duplex TTAGGG repeats. The RNA interference-mediated knockdown of tbTRF arrested bloodstream cells at G(2)/M and procyclic cells partly at S phase. Functionally, tbTRF resembles mammalian TRF2 more than TRF1, as knockdown diminished telomere single-stranded G-overhang signals. This suggests that tbTRF, like vertebrate TRF2, is essential for telomere end protection, and this also supports the hypothesis that TRF rather than Rap1 is the more ancient DNA-binding component of the telomere protein complex. Identification of the first T. brucei telomere DNA-binding protein and characterization of its function provide a new route to explore the roles of telomeres in pathogenesis of this organism. This work also establishes T. brucei as an attractive model for telomere biology.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available