4.4 Article

Sound Transmission Loss Prediction of the Composite Fuselage with Different Methods

Journal

APPLIED COMPOSITE MATERIALS
Volume 19, Issue 6, Pages 865-883

Publisher

SPRINGER
DOI: 10.1007/s10443-011-9199-6

Keywords

Sound transmission loss; SEA; Fuselage; Cylinder

Ask authors/readers for more resources

Increase of sound transmission loss(TL) of the fuselage is vital to build a comfortable cabin environment. In this paper, to find a convenient and accurate means for predicting the fuselage TL, the fuselage is modeled as a composite cylinder, and its TL is predicted with the analytical, the statistic energy analysis (SEA) and the hybrid FE&SEA method. The TL results predicted by the three methods are compared to each other and they show good agreement, but in terms of model building the SEA method is the most convenient one. Therefore, the parameters including the layup, the materials, the geometry, and the structure type are studied with the SEA method. It is observed that asymmetric laminates provide better sound insulation in general. It is further found that glass fiber laminates result in the best sound insulation as compared with graphite and aramid fiber laminates. In addition, the cylinder length has little influence on the sound insulation, while an increase of the radius considerably reduces the TL at low frequencies. Finally, by a comparison among an unstiffened laminate, a sandwich panel and a stiffened panel, the sandwich panel presents the largest TL at high frequencies and the stiffened panel demonstrates the poorest sound insulation at all frequencies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available