4.7 Article

Subunit interaction with PICK and GRIP controls Ca2+ permeability of AMPARs at cerebellar synapses

Journal

NATURE NEUROSCIENCE
Volume 8, Issue 6, Pages 768-775

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nn1468

Keywords

-

Categories

Funding

  1. Wellcome Trust Funding Source: Medline

Ask authors/readers for more resources

At many excitatory central synapses, activity produces a lasting change in the synaptic response by modifying postsynaptic AMPA receptors (AMPARs). Although much is known about proteins involved in the trafficking of Ca2+-impermeable (GluR2-containing) AMPARs, little is known about protein partners that regulate subunit trafficking and plasticity of Ca2+-permeable (GluR2-lacking) AMPARs. At cerebellar parallel fiber - stellate cell synapses, activity triggers a novel type of plasticity: Ca2+ influx through GluR2-lacking synaptic AMPARs drives incorporation of GluR2-containing AMPARs, generating rapid, lasting changes in excitatory postsynaptic current properties. Here we examine how glutamate receptor interacting protein ( GRIP, also known as AMPAR binding protein or ABP) and protein interacting with C-kinase-1 ( PICK) regulate subunit trafficking and plasticity. We find that repetitive synaptic activity triggers loss of synaptic GluR2-lacking AMPARs by selectively disrupting their interaction with GRIP and that PICK drives activity-dependent delivery of GluR2-containing receptors. This dynamic regulation of AMPARs provides a feedback mechanism for controlling Ca2+ permeability of synaptic receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available