4.4 Article

A quantitative model for assessing community dynamics of pleistocene mammals

Journal

AMERICAN NATURALIST
Volume 165, Issue 6, Pages E168-E185

Publisher

UNIV CHICAGO PRESS
DOI: 10.1086/429699

Keywords

pleistocene mammals; community dynamics; range shifts; nonanalogue communities; climate change

Ask authors/readers for more resources

Previous studies have suggested that species responded individualistically to the climate change of the last glaciation, expanding and contracting their ranges independently. Consequently, many researchers have concluded that community composition is plastic over time. Here I quantitatively assess changes in community composition over broad timescales and assess the effect of range shifts on community composition. Data on Pleistocene mammal assemblages from the FAUNMAP database were divided into four time periods (preglacial, full glacial, postglacial, and modern). Simulation analyses were designed to determine whether the degree of change in community composition is consistent with independent range shifts, given the distribution of range shifts observed. Results indicate that many of the communities examined in the United States were more similar through time than expected if individual range shifts were completely independent. However, in each time transition examined, there were areas of nonanalogue communities. I conducted sensitivity analyses to explore how the results were affected by the assumptions of the null model. Conclusions about changes in mammalian distributions and community composition are robust with respect to the assumptions of the model. Thus, whether because of biotic interactions or because of common environmental requirements, community structure through time is more complex than previously thought.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available