4.5 Article

Direct visualization of mitochondrial zinc accumulation reveals uniporter-dependent and -independent transport mechanisms

Journal

JOURNAL OF NEUROCHEMISTRY
Volume 93, Issue 5, Pages 1242-1250

Publisher

WILEY
DOI: 10.1111/j.1471-4159.2005.03116.x

Keywords

calcium uniporter; fluorescence microscopy; mitochondrial membrane potential; oxidative stress

Funding

  1. NINDS NIH HHS [NS34138] Funding Source: Medline

Ask authors/readers for more resources

Current evidence suggests that zinc kills neurons by disrupting energy production, specifically by inhibiting mitochondrial function. However it is unclear if the inhibitory effect requires zinc accumulation, and if so, precisely how zinc enters mitochondria. Here, using fluorescence microscopy to visualize individual rat brain mitochondria, we detected matrix zinc uptake using the fluorophore FluoZin-3. Fluorescence increased rapidly in mitochondria treated with micromolar free zinc, and was quickly returned to baseline by membrane permeant chelation. Zinc uptake occurred through the calcium uniporter, because depolarization or uniporter blockade reduced fluorescence changes. However, increased fluorescence under these conditions suggests that zinc can enter through a uniporter-independent pathway. Fluorescence steadily declined over time and was unaffected by acidification or phosphate depletion, suggesting that zinc precipitation is not a mechanism for reducing matrix zinc. Uniporter blockade with ruthenium red also did not change the rate of zinc loss. Instead, zinc appears to exit the matrix through a novel efflux pathway not yet identified. Interestingly, dye-loaded mitochondria showed no fluorescence increase after treatment with strong oxidants, arguing against oxidant-labile intra-mitochondrial zinc pools. This study is the first to directly demonstrate zinc accumulation in individual mitochondria and provides insight about mechanisms mediating mitochondrial zinc uptake and efflux.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available