4.7 Article

Characterisation of properties of various halloysites relevant to their use as nanotubes and microfibre fillers

Journal

APPLIED CLAY SCIENCE
Volume 74, Issue -, Pages 47-57

Publisher

ELSEVIER
DOI: 10.1016/j.clay.2012.06.014

Keywords

Halloysite nanotubes; Elemental analysis; X-ray diffraction analysis; Transmission electron microscopy; Zeta potential measurements; N-2 adsorption analysis

Ask authors/readers for more resources

There is increasing research interest on new industrial applications for the clay mineral halloysite where greater use is made of its natural tubular morphology, nano-scale diameter and contrasting chemistry on external and internal surfaces. Halloysite nanotubes, commonly referred to as HNTs, have potential applications as microfibre fillers, carriers for the supply and controlled or sustained release of active agents for drug delivery and anticorrosion coatings, in nanoreactors or nanotemplates, and for the uptake of contaminants or pollutants. In this study, various properties were measured on 6 halloysites from different geographical and geological environments from Australia, New Zealand and the USA. From the results, inferences were drawn on their comparative suitability for new uses. The characterisation included identification of impurities by X-ray diffraction (XRD), morphology, surface area and pore volume by electron microscopy and nitrogen absorption, the determination of exchangeable cations, and measurement of zeta potential over a wide range of pH. Halloysite content in individual samples ranged from 84 to 98%. Impurities included minor quartz, cristobalite, kaolinite, gibbsite, alunite, iron oxides and anatase. Variation in halloysite morphology and the levels of impurities had the most effect on surface area and internal pore volume. Samples with low levels of impurities and regular, thin-walled tubes reported the highest pore volumes associated with the cylindrical cavity or lumen in halloysite tubes. Surface areas varied from 22 to 81 m(2).g(-1) and the proportion of pore space associated with the HNT lumen ranged from 11 to 39%. When the properties of the 6 different halloysites were assessed relative to the requirements for halloysite as nanotubes for either additives or carriers, one showed exceptional characteristics for both types of application but it occurs only rarely. Another halloysite that is moderately suitable for use as an additive but not a carrier occurs in a large deposit. The other samples each showed some limitations of suitability for use as an additive and/or as a carrier. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available