4.5 Article

Tumor necrosis factor α reduces butyrate oxidation in vitro in human colonic mucosa:: A link from inflammatory process to mucosal damage?

Journal

INFLAMMATORY BOWEL DISEASES
Volume 11, Issue 6, Pages 559-566

Publisher

OXFORD UNIV PRESS INC
DOI: 10.1097/01.MIB.0000161918.04760.f3

Keywords

butyrate; glucose; inflammatory bowel disease; beta-oxidation; tumor necrosis factor alpha

Ask authors/readers for more resources

Background: Butyrate produced by colonic bacterial fermentation is the main fuel for colonocytes, glucose being an alternative fuel. During inflammatory bowel disease, butyrate oxidation by colonocytes is impaired, and increased production of proinflammatory cytokines is detected in the colonic mucosa. We hypothesized that proinflammatory cytokines might reduce butyrate oxidation, and we assessed the in vitro effects of 3 proinflammatory cytokines on butyrate and glucose oxidation in colonic mucosa. Methods: Colonic biopsies were obtained from normal mucosa in 42 patients who underwent a colonoscopy. Biopsies were incubated in RPMI 1640 with [1-C-14]-butyrate or [U-C-14]-glucose with or without I of the 3 following proinflammatory cytokines: tumor necrosis factor alpha (TNF alpha), interleukin (IL)-1 beta, and IL-6. For each cytokine, 4 different concentrations were tested in 8 subjects. Concentrations overlapped those commonly found in inflamed mucosa and had no cytotoxicity as assessed in preliminary experiments using both the trypan blue exclusion test and lactate dehydrogenase release. Production of (CO2)-C-14 (picomoles per microgram dry weight per hour) was measured after a 2-hour incubation and expressed as a percentage of the control [C-14] -substrate oxidation without cytokines. Results: Whereas glucose oxidation was not affected, butyrate oxidation was reduced significantly (P < 0.05) by TNF alpha at concentrations of 100 (-26 +/- 6%), 1000 (-32 +/- 7%), and 5000 pg/mL (-34 +/- 5%). IL-1 beta (0, 500, 5000, and 25,000 pg/mL) and IL-6 (0, 100, 1000, and 5000 pg/mL) did not affect either substrate oxidation. Conclusions: TNF alpha at concentrations found in inflamed mucosa reduces butyrate oxidation in vitro in mucosa from healthy controls. This result is not caused by a cytotoxic effect of TNF alpha and is not balanced by an increased oxidation of glucose. Reduced butyrate oxidation results in a decreased energy supply to colonocytes and may explain, in part, mucosal damage occurring during attacks of inflammatory bowel disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available