4.0 Article

Activation of the endoplasmic reticulum stress response in autoimmune myositis - Potential role in muscle fiber damage and dysfunction

Journal

ARTHRITIS AND RHEUMATISM
Volume 52, Issue 6, Pages 1824-1835

Publisher

WILEY-LISS
DOI: 10.1002/art.21103

Keywords

-

Categories

Funding

  1. NIAMS NIH HHS [AR-44684] Funding Source: Medline
  2. NIDCR NIH HHS [DE-12354] Funding Source: Medline

Ask authors/readers for more resources

Objective. The etiology and pathogenesis of human inflammatory myopathies remain unclear. Findings of several studies suggest that the degree of inflammation does not correlate consistently with the severity of clinical disease or of structural changes in the muscle fibers, indicating that nonimmune pathways may contribute to the pathogenesis of myositis. This study was undertaken to investigate these pathways in myositis patients and in a class I major histocompatibility complex (MHC)-transgenic mouse model of myositis. Methods. We examined muscle tissue from human myositis patients and from class I MHC-transgenic mice for nonimmune pathways, using biochemical, immunohistochemical, and gene expression profiling assays. Results. Up-regulation of class I MHC in skeletal muscle fibers was an early and consistent feature of human inflammatory myopathies. Class I MHC staining in muscle fibers of myositis patients showed both cell surface and a reticular pattern of internal reactivity. The pathways of endoplasmic reticulum (ER) stress response, the unfolded protein response (glucose-regulated protein 78 pathway), and the ER overload response (NF-kappa B pathway) were significantly activated in muscle tissue of human myositis patients and in the mouse model. Ectopic expression of wild-type mouse class I MHC (H-2K(b)) but not degradable glycosylation mutants of H-2K(b) induced ER stress response in C2C12 skeletal muscle cells. Conclusion. These results indicate that the ER stress response may be a major nonimmune mechanism responsible for skeletal muscle damage and dysfunction in autoimmune myositis. Strategies to interfere with this pathway may have therapeutic value in patients with this disease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available