4.7 Review

Synthesis, characterization and photocatalytic activity of TiO2 supported natural palygorskite microfibers

Journal

APPLIED CLAY SCIENCE
Volume 52, Issue 3, Pages 301-311

Publisher

ELSEVIER
DOI: 10.1016/j.clay.2011.03.009

Keywords

Palygorskite; TiO2; Photocatalysis; Inorganic-inorganic nanocomposites; Orange G pollutant

Funding

  1. Convention de cooperation CNRST-Maroc/CNRS-France [04/08]
  2. Programme de Cooperation Scientifique Interuniversitaire de l'Agence Universitaire de la Francophonie [63 13PS826]
  3. Programme d'Action Integree Volubilis [MA-08-185]

Ask authors/readers for more resources

This study deals with the synthesis of TiO2 supported Moroccan palygorskite fibers and their use as photocatalyst for the removal of Orange G pollutant from wastewater. The TiO2-palygorskite nanocomposite synthesis was accomplished according to a colloidal route involving a cationic surfactant as template (hexadecyltrimethylammonium bromide) assuring hence organophilic environment for the formation of TiO2 nanoparticles. The clay minerals samples were characterized before and after functionalization with TiO2. Anatase crystallizes above ca. 450 degrees C and remarkably remains stable up to 900 degrees C. In contrast, pure TiO2 xerogel obtained from titanium tetraisopropoxide (TTIP) showed before calcination a nanocrystalline structure of anatase. By increasing the temperature, anatase readily transforms into rutile beyond 600 degrees C. The remarkable stability at high temperature of anatase particles immobilized onto palygorskite microfibers was due to the hindrance of particles growth by sintering. Homogeneous monodisperse distribution of anatase particles with an average size of 8 nm was found by TEM and XRD onto palygorskite fibers. This anatase particle size remains below the nucleus critical size (ca. 11 nm) required for anatase rutile transition. The TiO2 supported palygorskite sample annealed in air at 600 degrees C for 1 h exhibits the highest photocatalytic activity towards the degradation of Orange G compared to nanocomposite samples prepared under different conditions as well as pure TiO2 powders obtained from the xerogel route or commercially available as Degussa P25. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available