4.7 Review

Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review

Journal

APPLIED CLAY SCIENCE
Volume 47, Issue 3-4, Pages 182-192

Publisher

ELSEVIER
DOI: 10.1016/j.clay.2009.11.044

Keywords

Allophane; Catalysts; Clays; Fenton-like reaction; Oxide minerals; Zeolites

Ask authors/readers for more resources

Advanced oxidation processes (AOP), involving the generation of highly oxidizing radical species, have attracted much attention because of their potential in eliminating recalcitrant organic pollutants from different environmental matrices. Among the most investigated AOP is the Fenton reaction in which hydroxyl radicals (HO center dot) are generated through the catalytic reaction of Fe(II)/Fe(III) in the presence of hydrogen peroxide. The use of clays and iron-oxide minerals as catalysts of Fenton-like reactions is a promising alternative for the decontamination of soils, groundwaters, sediments, and industrial effluents. The low cost, abundance, and environmentally friendly nature of clay minerals and iron oxides are an added advantage. Additionally, the introduction of nanoparticles in heterogeneous catalytic processes has led to appreciable improvements in catalytic efficiency. Here we review the application of clays and iron-oxide minerals as supports or active catalysts in Fenton-like reactions, and summarize the latest advances in nanocatalyst development. We also evaluate the potential use of allophane nanoparticles, coated with iron oxides, as catalysts of Fenton-like reactions. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available