4.6 Article

Hyperthyroidism and cation pumps in human skeletal muscle

Journal

Publisher

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpendo.00533.2004

Keywords

Ca2+-activated adenosine triphosphatase; Na+-K+-activated adenosine triphosphatase; energy expenditure

Ask authors/readers for more resources

Skeletal muscle constitutes the major target organ for the thermogenic action of thyroid hormone. We examined the possible relation between energy expenditure (EE), thyroid status, and the contents of Ca2+-ATPase and Na+-K+-ATPase in human skeletal muscle. Eleven hyperthyroid patients with Graves' disease were studied before and after medical treatment with methimazole and compared with eight healthy subjects. Muscle biopsies were taken from the vastus lateralis muscle, and EE was determined by indirect calorimetry. Before treatment, the patients had two- to fivefold elevated total plasma T-3 and 41% elevated EE compared with when euthyroidism had been achieved. In hyperthyroidism, the content of Ca2+-ATPase was increased: (mean +/- SD) 6,555 +/- 604 vs. 5,212 +/- 1,580 pmol/g in euthyroidism (P = 0.04) and 4,523 +/- 1,311 pmol/g in healthy controls (P = 0.0005). The content of Na+-K+-ATPase showed 89% increase in hyperthyroidism: 558 +/- 101 vs. 296 +/- 34 pmol/g (P = 0.0001) in euthyroidism and 278 +/- 52 pmol/g in healthy controls (P < 0.0001). In euthyroidism, the contents of both cation pumps did not differ from those of healthy controls. The Ca2+-ATPase content was significantly correlated to plasma T3 and resting EE. This provides the first evidence that, in human skeletal muscle, the capacity for Ca2+ recycling and active Na+-K+ transport are correlated to EE and thyroid status.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available