4.6 Article

Selective and irreversible cell cycle inhibition by diphenyleneiodonium

Journal

MOLECULAR CANCER THERAPEUTICS
Volume 4, Issue 6, Pages 876-884

Publisher

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-05-0009

Keywords

-

Categories

Ask authors/readers for more resources

Because cell proliferation is subject to checkpoint-mediated regulation of the cell cycle, pharmacophores that target cell cycle checkpoints have been used clinically to treat human hyperproliferative disorders. It is shown here that the flavoprotein inhibitor diphenyleneiodionium can block cell proliferation by targeting of cell cycle checkpoints. Brief exposure of mitotically arrested cells to diphenyleneiodonium induces a loss of the mitotic cell morphology, and this corresponds with a decrease in the levels of the mitotic markers MPM2 and phospho-histone H3, as well as a loss of centrosome maturation, spindle disassembly, and redistribution of the chromatin remodeling helicase ATRX. Surprisingly, this mitotic exit resulted in a tetraploidization that persisted long after drug release. Analogously, brief exposure to diphenyleneiodonium also caused prolonged arrest in G(1) phase. By contrast, diphenyleneiodonium exposure did not abrogate S phase, although it did result in a subsequent block of G(2) cell cycle progression. This indicates that diphenyleneiodonium selectively targets components of the cell cycle, thereby either causing cell cycle arrest, or checkpoint override followed by cell cycle arrest. These irreversible effects of diphenyleneiodonium on the cell cycle may underlie its potent anti proliferative activity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available