4.5 Article

Modeling for radio-frequency conductive keratoplasty:: implications for the maximum temperature reached in the cornea

Journal

PHYSIOLOGICAL MEASUREMENT
Volume 26, Issue 3, Pages 157-172

Publisher

IOP PUBLISHING LTD
DOI: 10.1088/0967-3334/26/3/002

Keywords

computer model; conductive keratoplasty; cornea; finite-element method hyperopia; needle electrode; numerical model; radio-frequency; theoretical model; thermokeratoplasty

Ask authors/readers for more resources

Conductive keratoplasty (CK) is a new surgical technique for steepening the contours of the cornea to reduce hyperopia. It has been emphasized that during CK, tissue resistance to radio-frequency electrical current flow generates a localized heat with temperatures between 65 and 75 degrees C; however, we hypothesize that the maximum temperature reached in the cornea may be higher. For this reason, we developed a finite-element model to estimate the temperature distributions in the cornea during CK. The time evolution of the impedance obtained from computer simulations was compared to that obtained in an experimental study previously published. Our results show that during a typical CK with a 60% setting power (equivalent to 200 V peak-to-peak), the cornea may reach temperatures over 100 degrees C at the electrode tip. On the other hand, the initial impedance of the cornea has a significant influence on the temperature distribution, while the initial temperature of the cornea is not a significant parameter. The results also suggest that low power settings (30-40%) do not produce temperatures over 100 degrees C. Finally, although the actual voltage waveform during CK is exponential and pulsed, our model based on a constant voltage (with a value equal to the root mean square value) provides a better agreement between the theoretical impedance time evolution and that obtained experimentally.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available