4.6 Article

Optical characterization of porous alumina from vacuum ultraviolet to midinfrared

Journal

JOURNAL OF APPLIED PHYSICS
Volume 97, Issue 11, Pages -

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1921336

Keywords

-

Ask authors/readers for more resources

Porous alumina was fabricated and optically characterized over a wide spectral range. Layers were formed electrochemically in oxalic acid solution from 10-mu m-thick aluminum films evaporated onto silicon wafers. The layer formation was monitored with in situ spectroscopic ellipsometry in the visible and near-infrared wavelength range to accurately determine the thickness and dielectric functions. Anisotropy due to the columnar nature of the porous structure was determined using optical modeling. The porous alumina layer was found to have a small but significant absorption tail throughout the visible region. Atomic force microscopy and scanning electron microscopy were used throughout the process to assess the quality of pore formation. The mean pore center-to-center spacing was approximately 100 nm with thicknesses up to 5 mu m. The infrared spectra revealed absorption peaks previously seen in ceramic alumina and peaks not associated with bulk alumina.(C) 2005 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available