4.8 Article

Ag3PO4/reduced graphite oxide sheets nanocomposites with highly enhanced visible light photocatalytic activity and stability

Journal

APPLIED CATALYSIS B-ENVIRONMENTAL
Volume 132, Issue -, Pages 45-53

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.apcatb.2012.11.022

Keywords

Reduced graphite oxide sheets; Silver orthophosphate; Nanocomposite; Photocatalysis; Stability

Funding

  1. National Science Foundation for Distinguished Young Scholars [50925206]

Ask authors/readers for more resources

A series of Ag3PO4 and reduced graphite oxide sheets (RGOs) nanocomposites have been fabricated by a facile chemical precipitation approach in N,N-dimethylformamide (DMF) solvent without any hard/soft templates. The as-prepared Ag3PO4/RGOs composites were characterized by X-ray diffraction pattern (XRD), Fourier transform infrared spectra (FTIR), Raman spectroscopy, field emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and ultraviolet-visible (UV-vis) diffuse reflectance spectroscopy (DRS). It is found that the nano-sized Ag3PO4 particles are deposited on the surfaces of RGOs. The Ag3PO4/RGOs nanocomposites exhibit enhanced photocatalytic activity for the photodegradation of organic methyl orange (MO) and methylene blue (MB) under visible light irradiation. The photocatalytic rate of Ag3PO4/2.1 wt% RGOs nanocomposite is 3 and 2 times of that of pure Ag3PO4 nanoparticles for the degradation of MO and MB, respectively. Furthermore, the photocatalytic and structural stability of Ag3PO4 is greatly enhanced. It is suggested that RGOs can be used as protective coatings that partially inhibit the photocorrosion of Ag3PO4. Overall, this work could provide a new approach to the improvement not only in the photocatalytic activity but also the stability of photocorrosion catalysts. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available