4.7 Article

Anaerobic oxidation of methane and sulfate reduction along the Chilean continental margin

Journal

GEOCHIMICA ET COSMOCHIMICA ACTA
Volume 69, Issue 11, Pages 2767-2779

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.gca.2005.01.002

Keywords

-

Ask authors/readers for more resources

Anaerobic oxidation of methane (AOM) and sulfate reduction (SR) were investigated in sediments of the Chilean upwelling region at three stations between 800 and 3000 In water depth. Major goals of this study were to quantify and evaluate rates of AOM and SR in a coastal marine upwelling system with high organic input, to analyze the impact of AOM on the methane budget, and to determine the contribution of AOM to SR within the sulfate-methane transition zone (SMT). Furthermore, we investigated the formation of authigenic carbonates correlated with AOM. We determined the vertical distribution of AOM and SR activity, methane, sulfate, sulfide, pH, total chlorins, and a variety of other geochemical parameters. Depth-integrated rates of AOM within the SMT were between 7 and 1124 mmol m(-2) a(-1), effectively removing methane below the sediment-water interface. Single measurements revealed AOM peaks of 2 to 51 nmol cm(-3) d(-1), with highest rates at the shallowest station (800 m). The methane turnover was higher than in other diffusive systems of similar ocean depth. This higher turnover was most likely due to elevated organic matter input in this upwelling region offering significant amounts of substrates for methanogenesis. SR within the SMT was mostly fuelled by methane. AOM led to the formation of isotopically light DIC (delta(13)C: -24.6 parts per thousand VPDB) and of distinct layers of authigenic carbonates (delta(13)C: - 14.6 parts per thousand VPDB). Copyright (c) 2005 Elsevier Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available